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Outline

Goal: Systematic Derivation of PDE Models for Pedestrian Traffic Flow

• Microscopic Rules for the Interaction of Pedestrians Moving in

Opposite Directions

• Microscopic Cellular Automata Model for Pedestrian Flow

• Derivation of the Coarse-Grained PDE

• Derivation of Nonlinear Diffusion

• Numerical Examples – Quantitative Agreement with Stochastic

Simulations in Weaker Slowdown Regime
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Stochastic Lattice Model of Pedestrian Traffic

Approach: One-dimensional {0,1} Lattice Configuration for

σ±k (t) =

{
1, pedestrian moving to the right (left)

0, empty cell

If no pedestrians are moving in the opposite direction: Equivalent to
car traffic models

• Two pedestrians moving in the same direction cannot occupy the
same cell

• Pedestrians moving into two opposite directions can occupy the same
cell
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To construct the microscopic cellular automata model, we consider

explicit rules for the slowdown interaction.

We prescribe transition probabilities for four different pedestrian

configurations in the cells neighboring to the right-moving pedestrian

with σ+
k = 1 (assuming that σ+

k+1 = 0):

c0∆t, if σ−k = σ−k+1 = 0 (no left-moving pedestrians in cells k or k + 1)

c1∆t, if σ−k = 1, σ−k+1 = 0 (a left-moving pedestrian is in cell k)

c2∆t, if σ−k = 0, σ−k+1 = 1 (a left-moving pedestrian is in cell k + 1)

c3∆t, if σ−k = σ−k+1 = 1 (left-moving pedestrians in cells k and k + 1)

From the common sense considerations, the velocities should obey the

following relationship: c3 < c2 ' c1 < c0

Transition probabilities for the left-moving pedestrian σ−k = 1 can be

obtain in a similar manner.
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Probability of a right-moving pedestrian to move from cell k to cell k+1

within ∆t is

P+
k→k+1 = ∆t

[
c0σ

+
k (1− σ+

k+1)(1− σ−k )(1− σ−k+1)

+ c1σ
+
k (1− σ+

k+1)σ−k (1− σ−k+1)

+ c2σ
+
k (1− σ+

k+1)(1− σ−k )σ−k+1 + c3σ
+
k (1− σ+

k+1)σ−k σ
−
k+1

]

Probability of a left-moving pedestrian to move from cell k to cell k− 1

within ∆t is

P−k→k−1 = ∆t

[
c0σ
−
k (1− σ−k−1)(1− σ+

k−1)(1− σ+
k )

+ c1σ
−
k (1− σ−k−1)(1− σ+

k−1)σ+
k

+ c2σ
−
k (1− σ−k−1)σ+

k−1(1− σ+
k ) + c3σ

−
k (1− σ−k−1)σ+

k−1σ
+
k

]
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Goal: Predict the Density of the Pedestrian Traffic, Eσ+
k (t) and Eσ−k (t)

dEσ+
k

dt
= E

[
c0σ

+
k−1(1− σ+

k )(1− σ−k−1)(1− σ−k ))− c0σ
+
k (1− σ+

k+1)(1− σ−k )(1− σ−k+1)

+c1σ
+
k−1(1− σ+

k )σ−k−1(1− σ−k )− c1σ
+
k (1− σ+

k+1)σ−k (1− σ−k+1)

+c2σ
+
k−1(1− σ+

k )(1− σ−k−1)σ−k − c2σ
+
k (1− σ+

k+1)(1− σ−k )σ−k+1

+c3σ
+
k−1(1− σ+

k )σ−k−1σ
−
k − c3σ

+
k (1− σ+

k+1)σ−k σ
−
k+1

]
dEσ−k
dt

= E
[
c0σ

−
k+1(1− σ−k )(1− σ+

k )(1− σ+
k+1)− c0σ

−
k (1− σ−k−1)(1− σ+

k−1)(1− σ+
k )

+c1σ
−
k+1(1− σ−k )(1− σ+

k )σ+
k+1 − c1σ

−
k (1− σ−k−1)(1− σ+

k−1)σ+
k

+c2σ
−
k+1(1− σ−k )σ+

k (1− σ+
k+1)− c2σ

−
k (1− σ−k−1)σ+

k−1(1− σ+
k )

+c3σ
−
k+1(1− σ−k )σ+

k σ
+
k+1 − c3σ

−
k (1− σ−k−1)σ+

k−1σ
+
k

]
These equations are exact, but not closed!
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Mesoscopic Model

• Notations: ρ±k (t) := Eσ±k

• Assumptions: E
[
σ+
k−1σ

+
k σ
−
k−1σ

−
k

]
≈ E[σ+

k−1]E[σ+
k ]E[σ−k−1]E[σ−k ]

dρ+
k

dt
=c0ρ

+
k−1(1− ρ+

k )(1− ρ−k−1)(1− ρ−k )− c0ρ
+
k (1− ρ+

k+1)(1− ρ−k )(1− ρ−k+1)

+c1ρ
+
k−1(1− ρ+

k )ρ−k−1(1− ρ−k )− c1ρ
+
k (1− ρ+

k+1)ρ−k (1− ρ−k+1)

+c2ρ
+
k−1(1− ρ+

k )(1− ρ−k−1)ρ−k − c2ρ
+
k (1− ρ+

k+1)(1− ρ−k )ρ−k+1

+c3ρ
+
k−1(1− ρ+

k )ρ−k−1ρ
−
k − c3ρ

+
k (1− ρ+

k+1)ρ−k ρ
−
k+1

dρ−k
dt

=c0ρ
−
k+1(1− ρ−k )(1− ρ+

k )(1− ρ+
k+1)− c0ρ

−
k (1− ρ−k−1)(1− ρ+

k−1)(1− ρ+
k )

+c1ρ
−
k+1(1− ρ−k )(1− ρ+

k )ρ+
k+1 − c1ρ

−
k (1− ρ−k−1)(1− ρ+

k−1)ρ+
k

+c2ρ
−
k+1(1− ρ−k )ρ+

k (1− ρ+
k+1)− c2ρ

−
k (1− ρ−k−1)ρ+

k−1(1− ρ+
k )

+c3ρ
−
k+1(1− ρ−k )ρ+

k ρ
+
k+1 − c3ρ

−
k (1− ρ−k−1)ρ+

k−1ρ
+
k
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Macroscopic PDE Model

• k ∈ L: cells with some fixed length h > 0 in the lattice L

• Ω = [0, L] corresponds to L (the number of cells N depends on h)

• t→ ht and N →∞

We rewrite the mesoscopic system in the following flux form:

dρ+
k

dt
= −

F+
k,k+1 − F

+
k−1,k

h
,

dρ−k
dt

=
F−k,k+1 − F

−
k−1,k

h

where

F+
k,k+1 = ρ+

k (1− ρ+
k+1)

[
(1− ρ−k+1)

(
c0(1− ρ−k ) + c1ρ

−
k

)
+ρ−k+1

(
c2(1− ρ−k ) + c3ρ

−
k

)]
F−k,k+1 = ρ−k+1(1− ρ−k )

[
(1− ρ+

k )
(
c0(1− ρ+

k+1) + c1ρ
+
k+1

)
+ρ+

k

(
c2(1− ρ+

k+1) + c3ρ
+
k+1

)]
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dρ+
k

dt
= −

F+
k,k+1 − F

+
k−1,k

h
,

dρ−k
dt

=
F−k,k+1 − F

−
k−1,k

h

• Multiply these equations by ϕk := ϕ(kh), where ϕ is a C1
0 test function

• Use the summation by parts over Ω:

∑
k

ϕk
dρ±k
dt

= ±
∑
k

F±k,k+1
ϕk+1 − ϕk

h

• Multiply by h and expand ϕk+1 into a Taylor series about kh:

∑
k

ϕk
dρ±k
dt

h = ±
∑
k

F±k,k+1[ϕ′k +O(h)]h
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Define pedestrian densities on Ω as follows:

• Define the function ρ±(x, t) as a continuous piecewise linear

interpolation (in the spatial variable) of ρ±k (t)

• Take the limit as h→ 0+

Due to the boundedness of both ρ± and
dρ±k
dt we obtain a weak

formulation of the coarse-grained model:∫
Ω

ϕ(x)
∂

∂t
ρ±(x, t) dx = ±

∫
Ω

F±(ρ+, ρ−)ϕ′(x) dx

where F±(ρ+, ρ−) are defined as the corresponding limits of F±k,k+1:

F+(ρ+, ρ−) = f(ρ+)g(ρ−), F−(ρ+, ρ−) = f(ρ−)g(ρ+)

where

f(u) = u(1− u), g(u) = (c3 − c2 − c1 + c0)u2 + (c2 + c1 − 2c0)u+ c0
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∫
Ω

ϕ(x)
∂

∂t
ρ+(x, t) dx =

∫
Ω

f(ρ+)g(ρ−)ϕ′(x) dx

∫
Ω

ϕ(x)
∂

∂t
ρ−(x, t) dx = −

∫
Ω

f(ρ−)g(ρ+)ϕ′(x) dx

Since ϕ is arbitrary, we have
ρ+
t +

[
f(ρ+)g(ρ−)

]
x

= 0

ρ−t −
[
f(ρ−)g(ρ+)

]
x

= 0

where

f(u) = u(1− u), g(u) = (c3 − c2 − c1 + c0)u2 + (c2 + c1 − 2c0)u+ c0

Note that the velocities c1 and c2 enter only as a sum, and, therefore,

it is not necessary to specify them separately
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Properties of the PDE Model

The PDE system is only conditionally hyperbolic:

J(f, g) :=

 f ′(ρ+)g(ρ−) f(ρ+)g′(ρ−)

−f(ρ−)g′(ρ+) −f ′(ρ−)g(ρ+)


has real eigenvalues only if[

f ′(ρ−)g(ρ+) + f ′(ρ+)g(ρ−)
]2
− 4f(ρ−)f(ρ+)g′(ρ−)g′(ρ+) > 0

• For any particular choice of the velocities c0, c1, c2 and c3 there is a

region on non-hyperbolicity in the (ρ−, ρ+) plane

• The non-hyperbolicity can only manifest itself when pedestrians

moving in the opposite directions are both present in a particular

location
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• The non-hyperbolic region depends only on the ratio of velocities

c1/c0, c2/c0 and c3/c0, but not on the particular value of c0

• The non-hyperbolic region becomes larger as the slowdown effect

becomes more pronounces (i.e., as the ratios c1/c0, c2/c0 and c3/c0
become smaller)

• The loss of hyperbolicity may induce instabilities, which are

nonphysical and can be removed by introducing a nonlinear diffusive

correction to the system
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Nonlinear Diffusive Correction

dρ+
k

dt
= −

F+
k,k+1 − F

+
k−1,k

h
,

dρ−k
dt

=
F−k,k+1 − F

−
k−1,k

h

where

F+
k,k+1 = ρ+

k (1− ρ+
k+1)

[
(1− ρ−k+1)

(
c0(1− ρ−k ) + c1ρ

−
k

)
+ρ−k+1

(
c2(1− ρ−k ) + c3ρ

−
k

)]
F−k,k+1 = ρ−k+1(1− ρ−k )

[
(1− ρ+

k )
(
c0(1− ρ+

k+1) + c1ρ
+
k+1

)
+ρ+

k

(
c2(1− ρ+

k+1) + c3ρ
+
k+1

)]

The derivation of the coarse-grained PDE system can also be obtained

by formally using the Taylor expansions

ρ±k±1 = ρ±k ± h(ρ±k )′+
h2

2
(ρ±k )′′+O(h3)

followed by passing to the limit as h→ 0+

14



• Keep h fixed

• Neglect the O(h3) terms

ρ+
t +

[
f(ρ+)g(ρ−)

]
x

= h

[
c0
2
ρ+
xx + (c1 − c0 + (c3 − c2 − c1 + c0)ρ−

+ (c2 − c1)ρ+)ρ−x ρ
+
x +

1

2
(c1 − c2)ρ+(1− ρ+)ρ−xx

+
1

2

(
(c1 + c2 − 2c0)ρ−+ (c3 − c2 − c1 + c0)(ρ−)2

)
ρ+
xx

]

ρ−t −
[
f(ρ−)g(ρ+)

]
x

= h

[
c0
2
ρ−xx + (c1 − c0 + (c3 − c2 − c1 + c0)ρ+

+ (c2 − c1)ρ−)ρ+
x ρ
−
x +

1

2
(c1 − c2)ρ−(1− ρ−)ρ+

xx

+
1

2

(
(c2 + c1 − 2c0)ρ+ + (c3 − c2 − c1 + c0)(ρ+)2

)
ρ−xx

]

• Replace h with a small parameter ε and use the formulae for the fluxes

f(u) = u(1− u), g(u) = (c3 − c2 − c1 + c0)u2 + (c2 + c1 − 2c0)u+ c0

to obtain
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ρ+
t +

[
f(ρ+)g(ρ−)

]
x

=
ε

2

[
g(ρ−)ρ+

x + (c1 − c2)f(ρ+)ρ−x
]
x

ρ−t −
[
f(ρ−)g(ρ+)

]
x

=
ε

2

[
g(ρ+)ρ−x + (c1 − c2)f(ρ−)ρ+

x

]
x

• The coefficients of the nonlinear diffusion are positive provided c1 ≥ c2
and both ρ+ and ρ− are between 0 and 1

• Further simplifying assumption c1 = c2 leads to


ρ+
t +

[
f(ρ+)g(ρ−)

]
x

=
ε

2

[
g(ρ−)ρ+

x

]
x

ρ−t −
[
f(ρ−)g(ρ+)

]
x

=
ε

2

[
g(ρ+)ρ−x

]
x

• The assumption c1 = c2 is rather mild since the velocities c1 and c2
only enter as a sum into the fluxes
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ρ+
t +

[
f(ρ+)g(ρ−)

]
x

=
ε

2

[
g(ρ−)ρ+

x

]
x

ρ−t −
[
f(ρ−)g(ρ+)

]
x

=
ε

2

[
g(ρ+)ρ−x

]
x

• The nonlinear diffusion reflects the presence of pedestrians moving in

the opposite direction

− If ρ− = 0 (i.e., no pedestrians moving to the left are present), the

diffusion reduces to the usual linear diffusion 0.5εc0ρ
+
xx

− If ρ− = 1, then the diffusion also becomes linear 0.5εc3ρ
+
xx, but with

a smaller coefficient (since c3 < c0) reflecting a high density presence of

the pedestrians moving in the opposite direction

• ε needs to be established experimentally
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Semi-Discrete Central-Upwind Scheme

ρt + F(ρ)x = (Q(ρ)ρx)x

• ρ := (ρ+, ρ−)T

• F(ρ) :=
(
f(ρ+)g(ρ−), f(ρ−)g(ρ+)

)T

• Q(ρ) =
ε

2

(
g(ρ−) (c1 − c2)f(ρ+)

(c1 − c2)f(ρ−) g(ρ+)

)

• ρnj ≈
1

∆x

∫
Cj

ρ(x, tn) dx : cell averages over Cj := (x
j−1

2
, x
j+1

2
)

• The solution is approximated by a piecewise linear conservative,

second-order accurate, non-oscillatory reconstruction:

ρ̃n(x) =ρnj + (ρx)nj (x− xj) for x ∈ Cj
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The solution is evolved by the semi-discrete central-upwind scheme

[Kurganov, Tadmor; 2000]

[Kurganov, Noelle, Petrova; 2001]

[Kurganov, Lin; 2007]

dρj(t)

dt
= −

H
j−1

2
(t)−H

j+1
2
(t)

∆x
+

P
j−1

2
(t)−P

j+1
2
(t)

∆x

with the numerical fluxes given by

H
j+1

2
=
a+
j+1

2
F(ρE

j )− a−
j+1

2
F(ρW

j+1)

a+
j+1

2
− a−

j+1
2

+
a+
j+1

2
a−
j+1

2

a+
j+1

2
− a−

j+1
2

[
ρW
j+1 − ρE

j

]

P
j+1

2
= Q(ρ

j+1
2
)
ρj+1 −ρj

∆x
, ρ

j+1
2

=
ρE
j + ρW

j+1

2
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The reconstructed point values are

ρE
j :=ρj +

∆x

2
(ρx)j, ρW

j :=ρj −
∆x

2
(ρx)j

The discontinuities appearing at the reconstruction step at the interface

points {x
j+1

2
} propagate at finite speeds estimated by

a+
j+1

2
:= max

{
λ2

(
∂F

∂U
(ρE
j+1

2
)
)
, λ2

(
∂F

∂U
(ρW
j+1

2
)
)
,0
}

a−
j+1

2
:= min

{
λ1

(
∂F

∂U
(ρE
j+1

2
)
)
, λ1

(
∂F

∂U
(ρW
j+1

2
)
)
,0
}

λ1 < λ2: eigenvalues of the Jacobian ∂F
∂ρ

The eigenvalues of the Jacobian matrix are calculated as follows...
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We denote by

R = f ′(ρ+)g(ρ−)− f ′(ρ−)g(ρ+)

D =
[
f ′(ρ−)g(ρ+) + f ′(ρ+)g(ρ−)

]2
− 4f(ρ−)f(ρ+)g′(ρ−)g′(ρ+)

and consider the two possible cases:

• If both DE
j ≥ 0 and DW

j+1 ≥ 0 (hyperbolic regime), then

a+
j+1

2
=

1

2
max

{
RE
j +

√
DE
j , R

W
j+1 +

√
DW
j+1, 0

}

a−
j+1

2
=

1

2
min

{
RE
j −

√
DE
j , R

W
j+1 −

√
DW
j+1, 0

}

• If either DE
j < 0 or DW

j+1 < 0 (nonhyperbolic regime), then

a+
j+1

2
=

1

2
max

{√
(RE

j )2 −DE
j ,

√
(RW

j+1)2 −DW
j+1

}
a−
j+1

2
= −a+

j+1
2
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• The choice of one-sided local speeds in the nonhyperbolic regime is

ad-hoc

• We have not tried to stabilize the inviscid PDE solution by increasing

the amount of numerical viscosity

• The solution has been stabilized by adding nonlinear diffusion terms

rigorously derived from the mesoscopic formulation
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Example — “Red Light” Initial Conditions

Two (relatively small) groups of pedestrians standing still and starting
to move toward each other at time t = 0:

• Microscopic model:

c0 = 0.8m/s, c1 = c2 = c0/a, c3 = c0/(2a), a = 2 or a = 3

σ+(k,0) =

1, n1 ≤ k ≤ n2

0, otherwise
σ−(k,0) =

1, N − n2 ≤ k ≤ N − n1

0, otherwise

N = 1400, n1 = 301, n2 = 340, h = 0.2m, ∆t = 0.01s, MC = 5000

• Macroscopic model:

ρ+(x,0) =

1, 60 < x < 68

0, otherwise
ρ−(x,0) =

1, 212 < x < 220

0, otherwise

L = 280, ∆x = 0.8
23
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a = 3

0 50 100 150 200 250
0

0.5

1

Time = 0

x

ρ
+
, 

ρ
−

0 50 100 150 200 250
0

0.1

0.2

0.3

Time = 80

x

ρ
+
, 

ρ
−

0 50 100 150 200 250
0

0.1

0.2

0.3

Time = 110

x

ρ
+
, 

ρ
−

0 50 100 150 200 250
0

0.1

0.2

0.3

Time = 140

x

ρ
+
, 

ρ
−

0 50 100 150 200 250
0

0.1

0.2

0.3

Time = 170

x

ρ
+
, 

ρ
−

0 50 100 150 200 250
0

0.1

0.2

0.3

Time = 210

x

ρ
+
, 

ρ
−

25



Example — Fully Mixed Initial Conditions

Pedestrian movement in a periodic domain, which is divided into 30
sectors with 15 cells in each sector (totally N = 450 cells)

• Microscopic model:

− the total number of 70 pedestrians (35 moving in each direction)

− the initial distribution of pedestrians is purely random (uniform)

− sectors are 7m long; L = 210m; ∆t = 0.005, MC = 3000

• Macroscopic model:

ρ±(x,0) =
n±i
15

for
i− 1

30
L < x <

i

30
L, i = 1, . . . ,30

− n+
i and n−i : right- and left-moving pedestrians in the ith sector

− c0 = 1m/s, c1 = c2 = c0/a, c3 = c0/(2a), a = 2 or a = 3

− L = 210, ∆x = 1, ε = 0.5
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a = 2 (right-moving pedestrians)
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a = 2 (right-moving pedestrians)
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a = 2 (left-moving pedestrians)
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a = 2 (left-moving pedestrians)
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a = 3 (right-moving pedestrians)
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a = 3 (right-moving pedestrians)
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a = 3 (left-moving pedestrians)
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a = 3 (left-moving pedestrians)
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Example — Nonhyperbolic Regime

Pedestrian movement in a periodic domain with velocities

c0 = 1m/s, c1 = c2 = c0/a, c3 = c0/(2a), a = 2 or a = 3

• Microscopic model:

− the number of cells is N = 900

− the cell size is 420/900 ≈ 0.4667m

− the time step is ∆t = 0.005 and MC = 3000

• Macroscopic model:

ρ+(x,0) =

0.6, 140 ≤ x ≤ 210

0, otherwise
ρ−(x,0) =

0.6, 186.6 ≤ x ≤ 233.3

0, otherwise

L = [0,420], ∆x = 420/1280
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a = 2 (right-moving pedestrians), CA vs. inviscid PDE

100 150 200 250 300
0

0.5

1

time = 0

x

100 150 200 250 300
0

0.5

1

time = 25

x

100 150 200 250 300
0

0.5

1

time = 50

x

100 150 200 250 300
0

0.5

1

time = 75

x

100 150 200 250 300
0

0.5

1

time = 0

x

100 150 200 250 300
0

0.5

1

time = 25

x

100 150 200 250 300
0

0.5

1

time = 50

x

Snapshots of ρ
+

100 150 200 250 300
0

0.5

1

time = 75

x

36



a = 2 (right-moving pedestrians), CA vs. viscous PDE, ε = 0.5,1.5
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